320 research outputs found

    Fungi Unearthed: Transcripts Encoding Lignocellulolytic and Chitinolytic Enzymes in Forest Soil

    Get PDF
    BACKGROUND: Fungi are the main organisms responsible for the degradation of biopolymers such as lignin, cellulose, hemicellulose, and chitin in forest ecosystems. Soil surveys largely target fungal diversity, paying less attention to fungal activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we have focused on the organic horizon of a hardwood forest dominated by sugar maple that spreads widely across Eastern North America. The sampling site included three plots receiving normal atmospheric nitrogen deposition and three that received an extra 3 g nitrogen m(2) y(1) in form of sodium nitrate pellets since 1994, which led to increased accumulation of organic matter in the soil. Our aim was to assess, in samples taken from all six plots, transcript-level expression of fungal genes encoding lignocellulolytic and chitinolytic enzymes. For this we collected RNA from the forest soil, reverse-transcribed it, and amplified cDNAs of interest, using both published primer pairs as well as 23 newly developed ones. We thus detected transcript-level expression of 234 genes putatively encoding 26 different groups of fungal enzymes, notably major ligninolytic and diverse aromatic-oxidizing enzymes, various cellulose- and hemicellulose-degrading glycoside hydrolases and carbohydrate esterases, enzymes involved in chitin breakdown, N-acetylglucosamine metabolism, and cell wall degradation. Among the genes identified, 125 are homologous to known ascomycete genes and 105 to basidiomycete genes. Transcripts corresponding to all 26 enzyme groups were detected in both control and nitrogen-supplemented plots. CONCLUSIONS/SIGNIFICANCE: Many of these enzyme groups are known to be important in soil turnover processes, but the contribution of some is probably underestimated. Our data highlight the importance of ascomycetes, as well as basidiomycetes, in important biogeochemical cycles. In the nitrogen-supplemented plots, we have detected no transcript-level gap likely to explain the observed increased carbon storage, which is more likely due to community changes and perhaps transcriptional and/or post-transcriptional down-regulation of relevant genes

    Simulated Atmospheric N Deposition Alters Fungal Community Composition and Suppresses Ligninolytic Gene Expression in a Northern Hardwood Forest

    Get PDF
    High levels of atmospheric nitrogen (N) deposition may result in greater terrestrial carbon (C) storage. In a northern hardwood ecosystem, exposure to over a decade of simulated N deposition increased C storage in soil by slowing litter decay rates, rather than increasing detrital inputs. To understand the mechanisms underlying this response, we focused on the saprotrophic fungal community residing in the forest floor and employed molecular genetic approaches to determine if the slower decomposition rates resulted from down-regulation of the transcription of key lignocellulolytic genes, by a change in fungal community composition, or by a combination of the two mechanisms. Our results indicate that across four Acer-dominated forest stands spanning a 500-km transect, community-scale expression of the cellulolytic gene cbhI under elevated N deposition did not differ significantly from that under ambient levels of N deposition. In contrast, expression of the ligninolytic gene lcc was significantly down-regulated by a factor of 2–4 fold relative to its expression under ambient N deposition. Fungal community composition was examined at the most southerly of the four sites, in which consistently lower levels of cbhI and lcc gene expression were observed over a two-year period. We recovered 19 basidiomycete and 28 ascomycete rDNA 28S operational taxonomic units; Athelia, Sistotrema, Ceratobasidium and Ceratosebacina taxa dominated the basidiomycete assemblage, and Leotiomycetes dominated the ascomycetes. Simulated N deposition increased the proportion of basidiomycete sequences recovered from forest floor, whereas the proportion of ascomycetes in the community was significantly lower under elevated N deposition. Our results suggest that chronic atmospheric N deposition may lower decomposition rates through a combination of reduced expression of ligninolytic genes such as lcc, and compositional changes in the fungal community

    Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Get PDF
    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost andduringmushroomformation.The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation aremore highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics

    Ambient and substrate energy influence decomposer diversity differentially across trophic levels

    Get PDF
    The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy

    Ambient and substrate energy influence decomposer diversity differentially across trophic levels.

    Get PDF
    The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy

    Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation

    Get PDF
    The aim of this study was to apply a generated Δtku70 strain with increased homologous recombination efficiency from the mycoparasitic fungus Trichoderma virens for studying the involvement of laccases in the degradation of sclerotia of plant pathogenic fungi. Inactivation of the non-homologous end-joining pathway has become a successful tool in filamentous fungi to overcome poor targeting efficiencies for genetic engineering. Here, we applied this principle to the biocontrol fungus T. virens, strain I10, by deleting its tku70 gene. This strain was subsequently used to delete the laccase gene lcc1, which we found to be expressed after interaction of T. virens with sclerotia of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Lcc1 was strongly upregulated at early colonization of B. cinerea sclerotia and steadily induced during colonization of S. sclerotiorum sclerotia. The Δtku70Δlcc1 mutant was altered in its ability to degrade the sclerotia of B. cinerea and S. sclerotiorum. Interestingly, while the decaying ability for B. cinerea sclerotia was significantly decreased, that to degrade S. sclerotiorum sclerotia was even enhanced, suggesting the operation of different mechanisms in the mycoparasitism of these two types of sclerotia by the laccase LCC1

    Effects of cadmium and phenanthrene mixtures on aquatic fungi and microbially mediated leaf litter decomposition

    Get PDF
    This version does not correspond to the published one. To access the final version go to: http://www.springerlink.com/content/t8t302617003m078/Urbanization and industrial activities have contributed to widespread contamination by metals and polycyclic aromatic hydrocarbons, but the combined effects of these toxics on aquatic biota and processes are poorly understood. We examined the effects of cadmium (Cd) and phenanthrene on the activity and diversity of fungi associated with decomposing leaf litter in streams. Leaves of Alnus glutinosa were immersed for 10 days in an unpolluted low-order stream in northwest Portugal to allow microbial colonization. Leaves were then exposed in microcosms for 14 days to Cd (0.06–4.5 mg L−1) and phenanthrene (0.2 mg L−1) either alone or in mixture. A total of 19 aquatic hyphomycete species were found sporulating on leaves during the whole study. The dominant species was Articulospora tetracladia, followed by Alatospora pulchella, Clavatospora longibrachiata, and Tetrachaetum elegans. Exposure to Cd and phenanthrene decreased the contribution of A. tetracladia to the total conidial production, whereas it increased that of A. pulchella. Fungal diversity, assessed as denaturing gradient gel electrophoresis fingerprinting or conidial morphology, was decreased by the exposure to Cd and/or phenanthrene. Moreover, increased Cd concentrations decreased leaf decomposition and fungal reproduction but did not inhibit fungal biomass production. Exposure to phenanthrene potentiated the negative effects of Cd on fungal diversity and activity, suggesting that the co-occurrence of these stressors may pose additional risk to aquatic biodiversity and stream ecosystem functioning.The Portuguese Foundation for the Science and Technology supported this work (POCI/MAR/56964/2004) and S. Duarte (SFRH/BPD/47574/2008
    corecore